3.2.1几个常用函数的导数一、复习引入1.解析几何中,过曲线某点的切线的斜率的精确描述与求值;物理学中,物体运动过程中,在某时刻的瞬时速度的精确描述与求值等,都是极限思想得到本质相同的数学表达式,将它们抽象归纳为一个统一的概念和公式——导数,导数源于实践,又服务于实践.2.求函数的导数的步骤是:说明:上面的方法中把x换成x0即为求函数在点x0处的导数.3.函数f(x)在点x0处的导数就是导函数在x=x0处的函数值,即.这也是求函数在点x0处的导数的方法之一。4.函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率.5.求切线方程的步骤:(1)求出函数在点x0处的变化率,得到曲线在点(x0,f(x0))的切线的斜率。(2)根据直线方程的点斜式写出切线方程,即二、几种常